Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011893, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166140

RESUMO

The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.


Assuntos
Microbioma Gastrointestinal , Trichinella spiralis , Triquinelose , Camundongos , Humanos , Animais , RNA Ribossômico 16S , Inflamação , Imunidade , Redes e Vias Metabólicas , Imunomodulação , Mamíferos
2.
Diabetes Obes Metab ; 25(12): 3817-3825, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735841

RESUMO

AIM: For the successful approval and clinical prescription of insulin biosimilars, it is essential to show pharmacokinetic (PK) and pharmacodynamic (PD) bioequivalence to the respective reference products sourced from the European Union and the United States. METHODS: Three phase 1, randomized, double-blind, three-period crossover trials compared single doses of the proposed biosimilar insulin analogues aspart (GL-Asp, n = 36), lispro (GL-Lis, n = 38) and glargine (GL-Gla, n = 113), all manufactured by Gan & Lee pharmaceuticals, to the respective EU- and US-reference products in healthy male participants (GL-Asp and GL-Lis) or people with type 1 diabetes (GL-Gla). Study participants received 0.2 U/kg (aspart and lispro) or 0.5 U/kg (glargine) of each treatment under automated euglycaemic clamp conditions. The clamp duration was 12 h (aspart and lispro) or 30 h (glargine). Primary PK endpoints were the total area under the PK curves (AUCins.total ) and maximum insulin concentrations (Cins.max ). Primary PD endpoints were the total area under the glucose infusion rate curve (AUCGIR.total ) and maximum glucose infusion rate (GIRmax ). RESULTS: Bioequivalence to both EU- and US-reference products were shown for all three GL insulins. Least squares mean ratios for the primary PK/PD endpoints were close to 100%, and both 90% and 95% confidence intervals were within 80%-125% in all three studies. There were no noticeable differences in the safety profiles between test and reference insulins, and no serious adverse events were reported for the GL insulins. CONCLUSION: GL-Asp, GL-Lis and GL-Gla are bioequivalent to their EU- and US-reference products.


Assuntos
Medicamentos Biossimilares , Insulina , Masculino , Humanos , Estados Unidos , Insulina Glargina/efeitos adversos , Insulina Lispro/uso terapêutico , Hipoglicemiantes/uso terapêutico , Equivalência Terapêutica , Medicamentos Biossimilares/uso terapêutico , Glicemia , Insulina Regular Humana , Estudos Cross-Over , Método Duplo-Cego , Insulina Aspart/efeitos adversos
3.
Front Cell Dev Biol ; 9: 695015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336843

RESUMO

Helminth infection modulates host regulatory immune responses to maintain immune homeostasis. Our previous study identified Trichinella spiralis paramyosin (TsPmy) as a major immunomodulatory protein with the ability to induce regulatory T cells (Tregs). However, whether TsPmy regulates gut Tregs and contributes to intestinal immune homeostasis remains unclear. Here we investigated the therapeutic effect of recombinant TsPmy protein (rTsPmy) on experimental colitis in mice, and elucidated the roles and mechanisms of colonic Tregs induced by rTsPmy in ameliorating colitis. Acute colitis was induced by dextran sodium sulfate (DSS) in C57BL/6J mice, and chronic colitis was induced by naïve T cells in Rag1 KO mice. Mice with colitis were pre-treated with rTsPmy intraperitoneally, and clinical manifestations and colonic inflammation were evaluated. Colonic lamina propria (cLP) Tregs phenotypes and functions in DSS-induced colitis were analyzed by flow cytometry. Adoptive transfer of cLP Tregs treated by rTsPmy into Rag1 KO chronic colitis was utilized to verify Tregs suppressive function. rTsPmy ameliorated the disease progress of DSS-induced colitis, reduced pro-inflammatory responses but enhanced regulatory cytokines production in DSS-induced colitis. Moreover, rTsPmy specifically stimulated the expansion of thymic-derived Tregs (tTregs) rather than the peripherally derived Tregs (pTregs) in the inflamed colon, enhanced the differentiation of effector Tregs (eTregs) with higher suppressive function and stability in colitis. This study describes the mechanisms of colonic Tregs induced by the Trichinella-derived protein rTsPmy in maintaining gut immune homeostasis during inflammation. These findings provide further insight into the immunological mechanisms involved in the therapeutic effect of helminth-derived proteins in inflammatory bowel diseases.

4.
Front Immunol ; 11: 572326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329535

RESUMO

Helminths develop strategies to escape host immune responses that facilitate their survival in the hostile host immune environment. Trichinella spiralis, a tissue-dwelling nematode, has developed a sophisticated strategy to escape complement attack. Our previous study demonstrated that T. spiralis secretes calreticulin (TsCRT) to inhibit host classical complement activation through binding to C1q; however, the C1q binding site in TsCRT and the specific mechanism involved with complement-related immune evasion remains unknown. Using molecular docking modeling and fragment expression, we determined that TsCRT-S, a 153-aa domain of TsCRT, is responsible for C1q binding. Recombinant TsCRT-S protein expressed in Escherichia coli had the same capacity to bind and inhibit human C1q-induced complement and neutrophil activation, as full-length TsCRT. TsCRT-S inhibited neutrophil reactive oxygen species and elastase release by binding to C1q and reduced neutrophil killing of newborn T. spiralis larvae. Binding of TsCRT-S to C1q also inhibited formation of neutrophil extracellular traps (NETs), which are involved in autoimmune pathologies and have yet to be therapeutically targeted. These findings provide evidence that the TsCRT-S fragment, rather than the full-length TsCRT, is a potential target for vaccine or therapeutic development for trichinellosis, as well as for complement-related autoimmune disease therapies.


Assuntos
Calreticulina/metabolismo , Complemento C1q/metabolismo , Armadilhas Extracelulares/metabolismo , Proteínas de Helminto/metabolismo , Neutrófilos/imunologia , Trichinella spiralis/fisiologia , Triquinelose/imunologia , Animais , Autoimunidade , Calreticulina/genética , Ativação do Complemento , Citotoxicidade Imunológica , Proteínas de Helminto/genética , Humanos , Evasão da Resposta Imune , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos/genética , Vacinas
5.
Front Immunol ; 11: 563784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117347

RESUMO

Helminth-modulated macrophages contribute to attenuating inflammation in inflammatory bowel diseases. The programmed death 1 (PD-1) plays an important role in macrophage polarization and is essential in the maintenance of immune system homeostasis. Here, we investigate the role of PD-1-mediated polarization of M2 macrophages and the protective effects of excretory/secretory products from Trichinella spiralis adult worms (AES) on DSS-induced colitis in mice. Colitis in mice was induced by oral administration of dextran sodium sulfate (DSS) daily. Mice with DSS-induced colitis were treated with T. spiralis AES intraperitoneally, and pathological manifestations were evaluated. Macrophages in mice were depleted with liposomal clodronate. Markers for M1-type (iNOS, TNF-α) and M2-type (CD206, Arg-1) macrophages were detected by qRT-PCR and flow cytometry. Macrophage expression of PD-1 was quantified by flow cytometry; RAW 264.7 cells and peritoneal macrophages were used for in vitro tests, and PD-1 gene knockout mice were used for in vivo investigation of the role of PD-1 in AES-induced M2 macrophage polarization. Macrophage depletion was found to reduce DSS-induced colitis in mice. Treatment with T. spiralis AES significantly increased macrophage expression of CD206 and Arg-1 and simultaneously attenuated colitis severity. We found T. spiralis AES to enhance M2 macrophage polarization; these findings were confirmed studying in vitro cultures of RAW264.7 cells and peritoneal macrophages from mice. Further experimentation revealed that AES upregulated PD-1 expression, primarily on M2 macrophages expressing CD206. The AES-induced M2 polarization was found to be decreased in PD-1 deficient macrophages, and the therapeutic effects of AES on colitis was reduced in PD-1 knockout mice. In conclusion, the protective effects of T. spiralis AES on DSS-induced colitis were found to associate with PD-1 upregulation and M2 macrophage polarization. Thus, PD-1-mediated M2 macrophage polarization is a key mechanism of helminth-induced modulation of the host immune system.


Assuntos
Secreções Corporais , Polaridade Celular/genética , Colite/induzido quimicamente , Colite/terapia , Sulfato de Dextrana/efeitos adversos , Macrófagos Peritoneais/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Trichinella spiralis/metabolismo , Animais , Colite/imunologia , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Células RAW 264.7 , Ratos
6.
Cells ; 8(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703440

RESUMO

Trichinella spiralis maintains chronic infections within its host, involving a variety of immunomodulatory properties, the mechanisms of which have not been completely elucidated. In this study, we found that T. spiralis infection induced strong regulatory T cell responses through parasite excretory-secretory (ES) products, characterized by increase of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ Treg cells accompanied by high levels of IL-10 and TGF-ß. T. spiralis adult worm excretory-secretory products (AES) and muscle larvae excretory-secretory products (MES) were both able to activate BMDCs in vitro to facilitate their maturation and to create regulatory cytokines IL-10 and TGF-ß. The T. spiralis AES- and MES-pulsed dendritic cells (DCs) possessed abilities not only to present antigens to sensitized CD4+ T cell to stimulate their proliferation but also to induce naive CD4+ T cells to differentiate to Treg cells secreting IL-10 and TGF-ß. The passive transfer of T. spiralis AES- and MES-pulsed bone marrow-derived dendritic cells (BMDCs) conferred the naive mice to acquire the differentiation of Treg cells. T. spiralis AES possesses a better ability to induce Treg cells than did MES, although the latter has the ability to induce CD4+CD25-Foxp3+ Treg cells. The results obtained in this study suggested that T. spiralis ES products stimulate the differentiation of host Treg cells possibly through activating dendritic cells to create a regulatory environment that benefits the survival of the parasite in the host.


Assuntos
Antígenos de Helmintos/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Proteínas de Helminto/imunologia , Interações Hospedeiro-Parasita/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Trichinella spiralis/imunologia , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Transcriptoma , Trichinella spiralis/metabolismo
7.
Parasit Vectors ; 11(1): 666, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587214

RESUMO

BACKGROUND: Trichinella spiralis is a tissue-dwelling parasite has developed the ability to evade the host immune attack to establish parasitism in a host. One of the strategies evolved by the nematode is to produce proteins that immunomodulate the host immune system. TsPmy is a paramyosin secreted by T. spiralis on the surface of larvae and adult worms that can interact with complement components C1q and C8/C9 to compromise their activation and functions. To better understand the mechanism of TsPmy involved in the C1q inactivation and immune evasion, the C1q-binding site on TsPmy was investigated. METHODS: The TsPmy C1q-binding site was investigated by sequential narrow-down fragment expression in bacteria and peptide binding screening. C1q binding activity was identified by Far-Western blotting and ELISA assays. RESULTS: After several runs of sequential fragment expression, the C1q binding site was narrowed down to fragments of N-terminal TsPmy226-280aa and TsPmy231-315aa, suggesting the final C1q binding site is probably located to TsPmy231-280aa. A total of nine peptides covering different amino acid sequences within TsPmy231-280aa were synthesized. The binding assay to C1q determined that only P2 peptide covering TsPmy241-280aa binds to C1q, indicating that the C1q binding domain may need both the linearized sequence and conformational structure required for binding to C1q. The binding of peptide P2 to C1q significantly inhibited both C1q-initiated complement classical activation and C1q-induced macrophage chemotaxis. CONCLUSIONS: This study identifies the C1q binding site within TsPmy which provides helpful information for developing a vaccine against trichinellosis by targeting the C1q-binding activity of TsPmy.


Assuntos
Complemento C1q/imunologia , Proteínas de Helminto/imunologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Tropomiosina/química , Tropomiosina/imunologia , Animais , Sítios de Ligação , Complemento C1q/química , Complemento C1q/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Evasão da Resposta Imune , Mapeamento de Peptídeos , Trichinella spiralis/química , Trichinella spiralis/genética , Triquinelose/parasitologia , Tropomiosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...